Size and Degree Anti-Ramsey Numbers

نویسنده

  • Noga Alon
چکیده

A copy of a graph H in an edge colored graph G is called rainbow if all edges of H have distinct colors. The size anti-Ramsey number of H, denoted by ARs(H), is the smallest number of edges in a graph G such that any of its proper edge-colorings contains a rainbow copy of H. We show that ARs(Kk) = Θ(k / log k). This settles a problem of Axenovich, Knauer, Stumpp and Ueckerdt. The proof is probabilistic and suggests the investigation of a related notion which we call the degree anti-Ramsey number of a graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

On the Size-Ramsey Number of Hypergraphs

The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we cons...

متن کامل

Ramsey numbers for bipartite graphs with small bandwidth

We estimate Ramsey numbers for bipartite graphs with small bandwidth and bounded maximum degree. In particular we determine asymptotically the two and three color Ramsey numbers for grid graphs. More generally, we determine the two color Ramsey number for bipartite graphs with small bandwidth and bounded maximum degree and the three color Ramsey number for such graphs with the additional assump...

متن کامل

Online and Size Anti-ramsey Numbers

A graph is properly edge-colored if no two adjacent edges have the same color. The smallest number of edges in a graph any of whose proper edge colorings contains a totally multicolored copy of a graph H is the size anti-Ramsey number ARs(H) of H. This number in offline and online setting is investigated here.

متن کامل

The vertex size-Ramsey number

In this paper, we study an analogue of size-Ramsey numbers for vertex colorings. For a given number of colors r and a graph G the vertex size-Ramsey number of G, denoted by R̂v(G, r), is the least number of edges in a graph H with the property that any r-coloring of the vertices of H yields a monochromatic copy of G. We observe that Ωr(∆n) = R̂v(G, r) = Or(n ) for any G of order n and maximum deg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015